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ABSTRACT

We deal with joint estimation of index o« and scale parameter £ in a
statistical model where one observes all jumps of a stable increasing process
with height not less than Yn and up to time Tn’ or more generally all
points of a certain Poisson random measure in a window [D,Tn]x[Yn,m]. For
different types of asymptotic behaviour of Tn' Yn as 3w, we- investigate
local asymptotic normality of the model at a true parameter wvalue {uﬂ,gn],

and properties of maximum likelihood estimators at this point.
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1 - INTRODUCTION

Consider a non-decreasing stable process X:—-[}{t} without drift, with

t=0
index «=(0,1) and scale parameter £>0, that is whose Laplace transform is:

A — Elexp -AX) = exp -t&M(1-aN”. (1.1)
The question of estimating the pair («,€) has been motivated and studied by
Basawa and Brockwell [1], [2].

In fact for any t>0, the laws of X for different values of the parame-
ters (e,§)  are all mutually singular, so the inference problem is trivial
when one can observe the path of X over any finite interval [0,t]. In prac-
tice, however, it is usually impossible to actually observe the path of X,
while various feasible partial observation schemes are possible. For example
Basawa and Brockwell proposed to observe all jumps of X occuring in a fixed
time interval [0,t] and of size bigger than y (the laws of X restricted
to the corresponding cbserved o-field are now all equivalent): as 0  they
proved the consistency and asymptotic normality of the MLE [Q.é}, with the
following limiting distribution if the true value is (e,€) and WeX(0,1):

&—m W
ey 2 by sy . (1.2)
(£-£)/log ¥ EaW

They did not investigate LAN (local asymptotic normality), nor did they prove
efficiency for the MLE. They also mention that similar results are true for
different observation schemes, where t is still fixed and one observes the

biggest jumps of X within [0,t] down to the nth one.

In this paper we consider more general observation schemes based on the ob-
servation of (some) jumps of X, or equivalently of (part of) the random mea-

Zsm.axsm %sax) P2
the Dirac measure sitting at point a). Under (1.1, p is a Poisson measure

with intensity on [R%:

sure u associated with the jumps, that is u =

=(1+ax)
af x l[m,m}{ﬂ liﬂ,m}[}d dt dx (1.3)

i o
and conversely if p is above, then Xt = J.‘:J- x plds,dx) is a stable process
4]

satisfying (1.1). As a matter of fact, we can even consider Poisson measures

having intensity measure (1.3) with o0 (corresponding to a stable process

only when «<(0,1)), and we will call {si'xi]i*l the (random) points in [HE



which support the measure u. Among many possibilities, we will study three
different observation schemes, which can be described as follows in terms of

the asymptotic:

Scheme 1: For each n we fix ¥,>0s tn>0 and we observe all points {Si,}{i]
inside [0.tnlx[yn.m]. The pair I{}*n.tn] is chosen so that the mean number of
cbserved points is again n, that is tn and y, are related by
-
0

Eotn}'n = 1 (1.4)

where {ED,::D} is the true value of the parameter.

Scheme 2: For each n  we fix ynm; we can rearrange the points {Si,}ii}
inside iﬂ.m}xlyn,m} as a sequence {SE,X;] with Si{S'{.._, and we observe

2
the n points ISI,XII,...,(SH,XHI.

Scheme 3: For each n  we fix tn:‘-D; we can rearrange the points {Si,}ii]
inside [D.tn}x[{}.m} as a sequence [SE,XE} with }{i‘JXé}..., and we observe
the n points [SI’XIJ"”'{Sn’xn]'

The first method proposed by Basawa and Brockwell corresponds to Scheme 1
1A
with tn = t, and thus ye = {EDtn/n]l D. The second one corresponds to Sche-

me 3 with tn=t. Schemes 2 and 3 may look more appealing since the asymptotic
does not depend on the true value {mO.ED] (at least explicitely); while
Scheme 1 may be easier to handle practically since it involves the observation

over a time-space window which is prescribed before the actual observation.

MNow about the results. We denote by {&n’gn} the MLE for («,£) at stage
n. First, for all observation schemes above, and regardless on the way y = or
tn behave, v’ﬁl[&n—cr.}/tx converges in law to A(0,1) as n3e, if « is the
true value of the index parameter. Second, if yn-;}re[ﬂ,m] for Schemes 1 and
2, or tn/n—)TE{D,m} for Scheme 3, we have the LAN property for the model lo-
calized around the true value in the usual way, with localizing rate vn for
both components, and the MLE is asymptotically regular and efficient for
(«,€) in the sense of Hajek [4].

Things are more complicated when _=.rn->D or y -w for Schemes 1 and 2, or
tn/n-m or tn/’n—:m: for Scheme 3, as iz apparent from Basawa and Brockwell's
result quoted above. The usual localization leads to a rate vn for the com-
ponent £, and a (faster) rate vn |log vl or vn |log t /nl for the compo-
nent «, and the LAN property holds, but the limiting Gaussian model is dege-

3



nerate (the corresponding Fisher information matrix is non-invertible). There
is also a "non-classical" localization (which is a non-linear transform) gi-
ving the LAN property with a non-degenerate limit and thus allowing to check
efficiency of estimators: e.g. for Schemes 1 and 2 it is possible to estimate

efficiently as n9w functionals {oz,&':.r;m] of («,£), which is relevant since

i )
then the observation describes the trajectory of a Markov step process I I X

0 ¥
plds,dx) where exponential holding times in any state have parameter E}.r;m

{cf. Theorem 1 and Eemark 4).

Finally we investigate one-dimensional submodels where £ is a known func-
tion of «. The situation is then the opposite of the previous one: if
)rn—av}'é[ﬂ.m} or tn/n—}TE{G,m], it may happen (depending on the function above)
that the MLE is not consistent. If }rn—:-D or  y - (resp. t /o0 or
tn/n—:m:l. there is a localization with the LAN property, and the MLE is effi-
cient, and the rate is vn |log y,| or vn |log t /nl, which is better than
what is obtained for the complete model. It should be noted at this point that
in this case the rate of convergence depends on the observation schemes: it is
better to have |log _vni or |log tn/nl be as big as possible, that is we
should observe the points either on a very small time interval and down to a
very small value of the "size", or the other way around points with a very big

size only, on a very large time interval.

2 - THE MODEL

1) Let (Q,¥) be the canonical space of all o-finite integer-valued measures

on [th, with the canonical measure For all eo»0, £>0 we

b= Yo aisi.xi]'
call ng the unique probability measure on (Q2,¥) under which p is a
Poisson random measure with intensity given by (1.3). We call ?{ the o-field
generated by the restriction of p to [y,e)x[0,t]. If y>0 and t<w, the

restrictions of the measures Fu £ to 5:1’ are all eqguivalent, and the densi-

ty of the restriction of Pa’,{-j’ w.r.t. the restriction of P“,E is
Z](o & 10,€) = exp (tEy " - £y %) + N Logfg-é%,] + N (a-a)), (2.1)
where -
NY N log(X,). (2.2)

= 1 : 1
t Eizl {xizy.siﬂt} zitl {xi::y, si-_ct}

In the other cases (y=0 or t== or both) the restrictions of the measures

4



P‘I:E to !?:{ are all mutually singular.

Formula (2.1) extends to stopping times. Namely if T is a finite stopping
time for the filtration {5{}&0 then ZEI_E.] given by (2.1) with t subs-
tituted with T iz the relative density of the absolutely continuous part of
Pi:r.’,ﬁ' w.r.t. P'I,E in restriction to ?,};.. Similarly [5_’1/2]220 is a fil-
tration and if /Y iz a finite stopping time relative to this filtration,
the density above in restriction to ?": is th[.] given by (2.1) with ¥

substituted with Y.

2) In what follows the true value of the parameter is {uﬂ.EDI. Now we consi-
der the observation schemes described in the introduction, and introduce some

unified notation:

Scheme 1: At stage n  we have ¥ios tn related by (1.4), and we observe ¥ tn.

n
We set Y =y , T =t .
n-"n" n n

¥
n .
Scheme 2: At stage n we have ¥ and we observe ?T where Tn = Inf(t:
n
Yn Yn :
N, =n) is an F, ]taﬂ—stuppmg time. Set Y =y .
151,n
Scheme 3: At stage n we have tn’ and we observe F pos where Yn = suply:
n

-stopping time. Set Tn=tn,

¥ o_ . 17z
Nt =n), so that lf‘fn is an [thn }ZEG

n
In all cases, we set

Y Y

N = N N = N

n Sl
» T i Tn. L = log Yn' (2.3)

These are observable, and ann for schemes 2 and 3, and Ln is determinis-

tic for schemes 1 and 2. The density of P w.r.t. P , in restriction
g o5
o'=0
yn
to the aobserved o-field FT , 1=
n
e ""-nxat.r—]"' "'“]-"ﬁ "'&é"—“_‘"“—"""""'"
Zn[ac.-‘g'l = exp {THEEOE - Ee ) + N_ log “D‘ED - Nn[cc—or.nl}. (2.4)

By a simple computation, the MLE for the pair («,£) at stage n is
A _ s s A
a = NN -NL) € = (N/T)expal . (2.5)
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REMAREK 1: When <], so Xt = J J x ulds,dx) is under P a stable pro-
o0

g
cess with (1.1), then thgixl::-r} o Er_'x as rao  [(see e.g. Feller [3]). In
this case one can view &n and %n as continuous-time versions of the esti-
mators introduced by Hill [&] for the index of regular variation « and the

tickness £ of the tail of the law of Xl: see also Hall [5]. =

3) In fact, the asymptotic behaviour of the following variables plays an

essential rale:

- L
U =LIN +oMNL -NJ, V =(N-nn W =(TEe °®_ o
n v,.;n 0" nn n n n n n=0

LEMMA 1: a) For scheme 1 we have Wn = 0 and [Un.‘i.?n] converges in law

under P to N(O,L.).
"""D'EU 2
b) For schemes 2 and 3 we have ‘-.fn = 0 and EUn,Wn} converges in law

under P to N(O,L.).
"Y‘D'EU 2

Proof. Throughout the proof, P=F . For Scheme 1 (1.4) yields Wﬂ=ﬂ, while

%30
in Schemes 2 and 3 we have Nn=r|, hence Vn=ﬂ'.

a) For Scheme 1, a standard computation on Poisson measures yields

=u=-vL
n

fﬂniu.ﬂ := log E[exp(—uNn—anH = -0+ nage e

Therefore (here L]_l is deterministic):

-ull -V
logEle ™ M

whn + mn[{umczﬂLn-w]/v'H,—aDu/\fﬁl

B ot ne—[uﬂr]/ﬁ 1
1-usvn

%[u2 + vzl

and the claim follows.

bl) Consider now Sr_‘he-me 2. The points {Si,Xi] inside lﬂ.m}xiyn,m} can

be labelled as ISE,X}] with ()-:S:"L-:S'z{..., and both sequences [S'i]iEl and
{X;}ihl are independent, and the second one consists in i.i.d. variables with
i —I—mﬂ @
density =x - X s l{y m]{x}. and the first cne is a Poisson process on
nl

-0
; ; : 0 . . e
IR+ with intensity .‘;‘Oyn . and further Tn = Sn' Recalling that Nn—n and

&



¥ =y we observe that U and W_  are independent.
n-n n n il o
We have N = log X' and Elexp -u log X)) =e D henics
n . i i o +1
1=i=n 0

uld
log Ele ™) = wh - n log(l+u/n) — us2 (2.6)

and Un converges in law to N(0,1). Next Tn has a gamma distribution with

_'xCILn
index n and parameter Eoe , B0

—uwn 5
log Ele ) = uwm - n log(l+u/vn) — v /2 (z.7)

and Wn converges in law to A(0,1). Then the claim is proved.

b2) Finally consider Scheme 3. The points [Si,){i] inside [O,tn]x[{},m}

-
can be labelled as (SX;) with XpX3>.., and if Z = X; O the sequence
{Zi]i”'l Is a Poisson process en R_ with intensity EDtn' Further, we have
o -a, L
N =- ) log Z, and U_=Vh + = log(Z/Z ), and e it z.
0 1=i=n vn Cl=i=n

First Zn has a gamma distribution with index n and parameter Eﬂtn' hence
(2.7) holds. Second the family [Z.i/'Zn:lﬁi‘—fn—l} is independent from Zn and
has the same law as the increasing rearrangment of n-1 independent
variables, uniformly distributed over ([0,1). So Un and Wn are independent

and a simple computation shows that (2.6) holds: our claim is thus proved. =

Note that (2.5) yields

n 0 Un
S A R (2.8)
0 1 + {vn—un}/-.fﬁ

and thus, as a first consequence of Lemma 1 we readily obtain

A

[+ 3
n
o

- @
COROLLARY 1: For all observation schemes, vn converges in law
0

under Fac to  N(0,1), where &n is the first component of the MLE

i s, E'____ . e T VU W L. —————— - e —

estimator,

This is a natural extension of the asymptotic behavicour of the Hill estima-
tor, as expressed e.g. in Theorem 2 of Hall [5]. Lemma 1 also contains

information about the second component £n of the MLE. Let us first introduce



the following deterministic sequence

En = {xDLn for Scheme 1 and 2, E'.n = log tnE{j/n for Scheme 3. (2.9)

Since En—acULn . lng(1+wn/’vrﬁ} for Scheme 3, we have in all cases by Lemma 1:

)
En —3 le[-om,+x] e Ln — T T, P./czo, (2.10)
P
E‘(}'E{) (log _vn]/v"ﬁ 3 0 (Schemes 1,2)
Enfv"ﬁ — 0 Ln/v"ﬁ' — 0 = (2.11)
(log tn]/fﬁ » 0 (Scheme 3)

COROLLARY 2: a) For all observation schemes, the sequence [én] iz weakly
consistent at ED if and only if (2.11) holds.

b} Condition (2.11) together with IEHI — o yield

e
£t {E -£y) = N@ -wg) + o (1). (2.12)
O0'n 4] HG’E{]
c) Condition (2.10) with Ie(-w,+=) implies
v"'_ A
aﬂ(a %o Emtg €)= (UU +V -W ) + o (1),
%%
which converges in law under Prx to a centered Gaussian variable with co—

'D’ED
1 2
variance matrix 2 |
£ 1+¢

(b) and Cerollary 1 give an extension of Basawa and Brockwell's result.

Proof. (2.5) implies

ﬁn BV AR o L
'E_ = — e:{p[a—{mn—mﬂl 1. (2.13)
_________u_____Ltwﬁz{E ______ v Ml Yoo

Thus Lemma 1 and Corollary 1 give all claims. =



3 - LOCALIZATION

1) In order to prove that in some of the schemes discussed above the MLE is
asymptotically optimal, we need to localize the statistical model around the
true value {HG,ED]. The first localization which we propose is not traditio-
nal, in the sense that it is not an affine transformation of the initial coor-
dinates. It gives a sequence of "curved" statistical models, the curve actual-

ly depending on the value of n.

In schemes 1 and 2, Ln = log ¥ is deterministic and the parameters

(#,m) of the local meodel around {mD,ED} at stage n are given by

Lna'ccﬁffﬁ
o = n:DU + v/vn), E = EDEI + n/vnle ; (3.1

For Scheme 3 this is not feasible since I‘n is random, and we set instead:

nED}ar/v"_

o« = aﬂtl + /1), £ = 5:: (1 + 5/vn)( (3.2)

FEMARK 2: (3.1) and (3.2) coincide for Scheme 1, because of (L.4). m

REMARK  3: At first glance this localization may seem a bit strange. To get
- some insight, let us consider only Schemes 1 and 2 and reparametrize the model

by [cx.Bn}. with

- _ 3
B, = B @& = & ° (s £ = By

n

This reparametrization depending on n is natural for the problem at hand,

=
since at stage n one observes in fact the process XI: = IEJ ¥ plds,dx) on

the time interval [G.t“L and under P":|c £ this process is a step Markov pro-

cess with parameter Bn[ot,ﬁ} for the holding times. The true value of the pa-
0y —a:DLn

rameter B is 'Bn, 5= ED"’rn = ﬁﬂe . The local parameters (y,m] at

stage n  are given in function of Em,ﬁn] by

x = o (1 + z’/\f_] Bn = ﬁn t][l + /1. (3.3)

So (3.1) yields a local model in the usual sense for the («,B ]—reparametrlza-
tion. The MLE ﬁ = Nn/Tn for 'Bn is always consistent at [aﬂ.gn}, i.e.

gn/ﬁnpﬂ in P“’q;}’ Eﬁ—prabamhty. because ﬁnfﬂn,D = E1+Vn/fﬁ][1+wn/\fﬁ].



(A similar argument leading to (3.3) for Scheme 3 would require g =
Sy - n
E(tnEG/n] : here iotD,&:G} appears in the reparametrization, which does

not make sense), m

At stage n, the space of local parameters is l':'IIl = (-vVn,e)x(-vn,®). Note

that EnTIRZ as nfw. For neN*, we set F;.T} = Peg for (zm) related with
Y

(@& by (3.1 or (3.2), and & = @F (] ) ). Using (2.5) and

)
g ] (w,mle i

(2.8), we see that the MLE in the model E’n is

vn—w
U R LA for Schemes 1,2
A n A oo 1 FN A & (3.4)
T v v e 7, /Vn 1
n n vol(l +Wn/‘u"'r_1} - 11 for Scheme 3.
The limiting model will be the Gaussian shift & = (RE.RZ,(Q ) )
o T f'.T.TI}EEZ
where Q? o is the normal distribution on R with covariance [2 and mean

value (7,7m).

THEOREM 1: For all observation schemes, and as n = w, we have:
al The sequence Qn weakly converges to E.

b) The pair (% .75) converges in law to A(0,1.), under P .
n’'n 2 “yEq
" ¢) The sequence [?n.%n] is a central sequence for E‘n.

Proof. Throughout the proof, P=P Set Z (r.n) =Z (a,&) with (a,8)
n:ﬂ,{‘;'ﬂ n n

and (y,m) related by (3.1) or (3.2). For schemes 1 and 2 (resp. 3) we have

- L.
iz _ ﬂ n e
log Zn(:nn] = -nT £.e Avn o+ Nn[log[1+n/fn][1+ar/v’n]l + mﬂLn-x/vfn] Nnaﬂf/\fﬁ

-mDL

-
n
(resp. Tngﬂe [1 - [1+n/€ﬁ][Tn§ﬂe

L
0 n/n]?/ﬁl

+ N_llog(1+n/Vn)(1+3/Vn) + (log T“F,D/n]ar/v"ﬁ] - ﬁnaor/v'rﬁ ).

. For Sch;&-me 1, we get

log _Z"n{‘ar,'n] = -0 + U+ (n + Unfﬁillugfhnﬁr_ﬂ{hf/vrﬁ] - ¥/vn]
2 2
= 'arUn + nvn - (y"+n )2 + up{l}. (3.5)

10



For Scheme 2, we get

log fn{:r,‘r.*} = -pn - W+ U+ nllog(l+n/vn)(1+y/vn) - ¥/vnl

2z 2
'.';Un - nwn - (¥~+n7 )2 + GP[IL (3.6)

For Scheme 3 we get, with W = l-:-Wn/v’ﬁ and W: = vn log W

log fn{far,n} . nwlilll - (1+n/vn)

nllog(l+n/vn)(1+y/vn) - ¥/vn]
= yU - oW - [a‘zﬂ'.-zlfz + o (1) (3.7)
n n | e 2

(3.5), (3.6) and (3.7) and Lemma 1 prove (a), and also that a central s=—
quence is [Un,vn}l for Scheme 1 and {Un,v-wn} for Schemes 2 and 3. (3.4)
gives &ﬂ = Un + cP{’JJ, and also %n = Vn + DPI{H for Scheme 1, and %n = -W

n
+ ::P[l}l for Scheme 2 or 3: this proves (b) and (c). =

REMAREKE 4: a) We refer to LeCam [7] or Strasser [8] for the notion of central
sequences. As a consequence of this theorem, {?n.%nll is an efficient sequen-

ce of estimators for the local parameters (7,7).

b) For Schemes 1 or 2, by Remark 3 and in particular by (3.3), the estima-

tion sequence [&n‘gn} for {a,ﬁn] is regular in the sense of Hajek [4] and

efficient at [mD’Hn.D} (i.e. under P“D’ ED]: take any other estimating se-
T ¥
quence {ncn,Bn} {?Tn—measurable], with the property that
n
v, ~ vn
—(&_-a (1+3/v0 vn)) |P 3.8
| D{ct o [+‘.ar VIR En.D{E B {1+11/ n)) “g“"’?r/ﬁ]:ﬁn’g“"‘“/‘!ﬁ]} (3.8)

converges as n2« to a limit which does not depend on (%,7): then this limi-
ting law is necessarily more spread out than the limit law J‘rf{OI ] obtained
for (3.8) with [cx ﬁ ) in place of '[cc ,ﬁ ).

én as an estimator of £. By Ecrollar_t,r 2, %n need not even converge to £.m

2) Suppose now that En + £ with £eR (recall (2.9)). Then the second parts
of both (3.1) and (3.2) give £ ~ £o(1 + n/v¥n + y8/v¥n) and we are led to con—

11



sider new local coordinates (¥,H) with
o€ = 410{1 + 7/vn), E = -E;'U[l + Hsvn). (3.9)

We call E‘I'_l the local model at stage n, with local parameters (3.9) (it has

the same set of parameters Bn as above), and {?n,ﬁn] the corresponding

MLE. The limiting model is the Gaussian model &' = [IZ-TtZ,."rEZ.{QJE )] 1,
7. H 2
£ (y,H)eR
where Q'JH is the Gaussian distribution with mean (#,H) and covariance g
2
1+ =L
If) = { b 1]

Sinee H and w+yf are “"equivalent", an affine transformation readily

gives the following corollary (which ean of course be proved directly):

COROLLARY 3: When En =+ feR  we have as noo:
a) The sequence E‘T'l weakly converges to &'
M ﬁ =1
b) The pair (y ,H ) converges in law te N(0,1(8) ), under P ;
nn aﬂ.ﬁo
c) The sequence [?n,ﬁn] is a central sequence for EI".

REMARK 5: a) Part (b) above is just a reformulation of Corollary 2(c).

b) Now the pair {&n,én] is regular and efficient for (o«,£) at [a:D,ED}. m

3) There is also a third localization which gives the LAN property. This third
localization being equivalent to (3.9) under the assumptions of Corollary 3,
we consider only the case H;nl + m. This localization is motivated by the
correct choice of norming constants, taken separately, for the a- and

£-compeonents of the score function at E:xD.EU}. Set
@ = ayl+ rxanufﬁ]. € = &, + HVn). (3.10)

(for all n big enough En#ll, so ¥y is well defined. We eall 8;1' the local

model at stage n, with lecal parameters (3.10), and [‘P‘n,ﬁn] the correspon-

ding MLE. The limiting model 1is the Gaussian model E" =
I[[Rz, ERz.'[R' o) ,), where  R_ is the Gaussian distribution with mean PR
=H o Her® .H

(n,H) and covariance [u} _l]‘

THEOREM 2: If ].Enl + w, the sequence El'_'l weakly converges to E" as noe.

12



The model E" is degenerate, with non-invertible Fisher information
matrix. The MLE [f"n.ﬁn] do not converge in law here, This is of course in

accordance with Corollary 2.
Proof. Set f:_’l[l".H] = Zn[m,E_,'] with (I[LH) and (e,€) related by (3.9). Then

- L - TL /F vn
0 n

=n G n =
log zn{l",H} = e TnED[l (1+H/vVnle ]+ FUn/!in

+ (n+V_vn)llog(1+Hn)(1+T 7€ vn) - M+ L )/2 vnl
n n 0n" n

Recall that for Schemes 1 and 2 we have En = ﬁDLn' hence

_ -T/vn
log Z'([H) = |:n+wn»f51{1 - (1+H/vn)e ]+ runxﬂn

+ [n+‘5.?nv"ﬁ}[lcg[1+H/fﬁ}[1+I'/Enfﬁ] - r/f.nu’ﬁ - I'/vnl

2 V _[(H-T) for Scheme 1
= —([-H)"/2 + DP[l} +
Wn(T-H] for Scheme 2,

and the result is proved in these two cases. For Scheme 3 we have mDLn = En -
Wﬁ/\fﬁ (notation of the proof of Theorem 1), so another similar computation

shows that log E]"_'I(I',H] = Wn{]"-H] - [P—H]Z/Z + ::rPIIl}, and we are finished. =

4 - ONE-DIMENSIONAL SUBMODELS

For Ac(0,=) open and f: A 5 (0,m) twice continuously differentiable, we
look at submodels Bf. = {le,flx)): «eA)e®, under the same observation schemes
as before. Of course we write P:: = an,f‘[oc]l' An example is given by A=(0,1)
and fle) = 1/T(1-a): this corresponds to the observation of an increasing sta-
ble process X with Laplace transform Elexp -F\Xt} = exp A% (ef. (L1)).
Another example is when £§=Eﬂ is known, so f I[rx]z&'D for all ae=A.

The true value of « is @ €A, and F;;D:t' {ocG]. We use the notation En of
(2.9). The localization for &« will be the same as in (3.10), except that
here- we-do—not—assume Iin'l'—:m,' and-?.n"'f.n may ~vamishr—Therefore we —set;—at

stage n:

i _ _ 2 -1/2
o = ucDII + wnl"} with mn = mn{acﬂl 1= {n{l-rEn]] : (4.1)

At stage n, the space of local parameters is ﬁn = {I: mﬂl[l+wn1"]eﬁ}. so that
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ﬁn’[‘ﬁ as new For nel*, we set F? = P-x for T' related with a« by (4.1),
Y

and € = @F PN _) we consider a MLE & for « in the model &

n Tn r F‘EEJn n n

(which is different from En in (2.5)!). By convention we take Enmxl with

o, arbitrary in A if the likelihood does not reach its maximum inside A,

and the corresponding MLE for the local model:

W
Fn = {mn - acﬂlfcrﬂun (4.2)

THEOREM 3: a) If !'.n + L=R, the sequence En weakly converges to the model
{R,R,ﬁ[r,gﬂ}rﬁﬁ}l, where

(e ID] 2 o
¢ = « f{_ixE'T‘ g = [1+(c-£)"1/(1+£7). (4.3)
b) IfF [Enl' » +m, the sequence En weakly converges to the model

{R,R,ﬁ[l",l}rem}, and Fn is a central sequence for En and converges in law

under P to  N(0,1).
“o

Proof. 1) We prove first the convergence of the models in (a) and (b). We use

all notation of the proof of Theorem 1, and P = Pcc . Note that
0

floe) lameg)l
e |

log Zn[uc.ﬂuc}] = nWI’I[l -

Tlole —
+ N_ log W + Nn[czﬂ—c:}. (4.4)

Set En{rl =Z (a,f(e)) with o« and T related by (4.1). Then

-t L T

fle) = Dnn]+1..muﬁ
f[mD] nn

log Zn[I"] = nwr'i[l =

flala
+ (n+V_vn)llog - (I+a, L Jw T
n f'f:xﬂlaﬂ 0 n n

For Schemes | and 2 we have o« L =£, while a.lL = £ -W'A/4 for Scheme 3.
= - ~-0O—1- B o SR

o £ RN S ) . | S ks e, e

In all cases ann\«‘rﬁ remains bounded in probability, so a simple computation

yields with ¢ as in (4.3):

o 2 2
log Znil"] = l"mnv’HIUn + {vn—wn}[c-mﬂl,n]] - sznnllﬂc-oaﬂi,n} 172 + L‘JP[L]'.
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Mow (a) is obvious, since then wnwf"ﬁ = (1+L'2}-V2 and %

lity (at least). In the situation of (b), mn'u’ﬁ + 0 and Imﬂannv'HI - 1, hence

Ln + £ in probabi-

if 'ﬁn and ﬁn equal V_ and W_  multiplied by the sign of ¢ . we deduce
that log Entl"] = —I‘l[?n—Wn] - 72 + oP{lj: this proves the convergence of
En and also that —?n for Scheme 1 and Wn for Schemes 2 or 3 is a central

sequence. So for (b) it remains to prove that

Fn = -"v.Fn + chI[l} (Scheme 1), Fn = Wn + uF{l] (Schemes 2, 3). (4.5)

2) Now we assume Iﬁn! + w. In a first step we prove that

PUIE (% - a)|<6)) —> 1 for all &0. (4.6)
n n 0

" _ : = e

Set Vn{ﬁ] = log Zn[cx.l"licx]:l and X(B)] = f‘{u:]/f‘{a:D} if B =« ch}I/aD.
Setalso M_=N//n and L' =« L . We know that (see Lemma 1):
n n n 0 n
M L 1, w* L 1, L' sE i} 1, (4.7)
I n n on

and we may rewrite (4.4) as

-RL’
V.(B) = W'M1 - X(B)e "4 M (log X(B) + log(1+g) - B - BL’] + BU_/Vn. (4.8)

Clearly, since VDID]=G and &n is the argument of one of the maxima of

"u"n{.}. (4.6) will follow if we prove that for all 3>0:

lim_ PESUP.E:].EL;J}E Vn[ﬁ] <0) =1 (4.9)

We fix &>0. Note that X(0)=I and X is continuous at 0, so for Ce
(0,1) fixed there is C'>0 with |[X(B)-1|=C when |B|=C'. Hence if IB|=C"
and if we set u_ = W'C + M [log(14C)(1+C’) + C], v = W'(1-C) and w =M -

n n n n n n n
Un/'L_'.'l?"l_l, we have on the set {W;ﬁﬂ}:
-EL;1
‘l.n"n[B] s u 4 vnll—e ) - wnBLn.
i & =& : -%
Now if a>0 and 1 < b/a < (e -e )/28, the function x = a(l-e “)-bx rea-

ches its maximum on the set {x:|x|=8} at x=8, for which it equals
ail-e-al'—bﬁ. Then on the set An = {W;ﬁ(}}n{vn}[}}n{1<wn/vn<{ea—e_6]/25},

] = ’ LN
VB = u +v(l-e ) -w & if |BI=C’, |BL’|=5.
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But (4.7} yields u -L} u = C + C + log(1+C)1+C"), e —]:—; 1-C  and w_

P -
— 1. We choose C,C' small enough so that wu + (1-C)(l-e al - & <0 and

that 1/(1-C) < [ea-e_'a}/zﬁ, S0 Pfﬁn] =+ 1 and finally

llmrl P[supﬂ: |EL;‘|}5, 1B]=C’ anfB] <0) = 1. {4.10)

Next if a,b>0 we have -ae '-bv = b(-1 - log a + log b) for all veR;
applying this to v = ,BLI’], a = W;IJ{{BL b = Mn' we deduce from (4.8) that on
{W'=0}:

n

?n{ﬁ] = Wn + Mn[—l - log Wn + log(l-B) - B + log Mn] - EUn/v‘ﬁ

= M log(l-p) + A B + B_

where A := -M_+ U /vn i} -1 and B_:= W' -M (1 +log W + log M) —-=P—}
n n n n n n n n
0; since supﬁ_lﬁlhc,ﬂug{l—ﬁ] - Bl <0 when C'>0, we deduce

111':1[1 F‘[supﬂ: IB]=C" aniﬁ'.i <0) = 1L (4.11)

Then (4.10) and (4.11) prove (4.9).

3) Now the proof of (4.5) goes along the traditional route. The derivative

of « > leg Zntcr.f‘{ac]'] is (see (4.4)):

—(e—e JL
_ . Tle) _ £ le) 0 fle 1, =
T:':rrn':m]I - an f‘faGFELn fle) le * Nn[f‘imj * E] Nn‘ (4.12)

Let Bn be the set where the maximum of Zn{.,f‘ (.)) is reached inside A. On

Bn we have Un{KnhD, hence Taylor's expansion yields

W o = . W
Un[aﬂ} + {ccn-ntD]Un[Bn:l 0, where Bn is between %o and o . (4.13)
By (4.12),
=[ee=ce L
: _ , Fla) | _ ' la)2 n .
Uﬁ[ﬁc] = nwn i j'” = IL&]_]_._.-!- gla)]e + Nn[g[cﬁ} ECNY i

0

where g = [f‘f"—f"zjffz. We know that mGLnﬁ.'.n i} 1, and f, f'f and g are
locally bounded on A, hence by (4.7) and the continuity of  and the fact

that GEA:
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Jlma_m lim sup PESUP{Z:IEH{EE—K[}Hfa

for all 7>0, and it follows by (4.6) that, with ﬁ‘n as in (4.13):

: 2 F i 2
Un{En )/ nfn —_— —L/o:u. (4.14)

Next (4.3) and (4.12) yield
szUnEccG] = an[uOLn—c] + Nn[c:+1] - o

Dﬁn = IUI1 + {uDLn—c}[Wn - vn}]vfﬁ.

and thus U (e Jo = W -V + o_(1). This, (4.14), (4.13) and the fact that
n 0 n n n P

P[En] <+ 1 (which fellows frem (4.6)) readily give (4.5), and the proof is-

finished. m

REMARK 6: If En + €eR  the statement (b) of Theorem 3 may be wrong, and it

v "
might even happen that the MLE « are not consistent.

However, if (o) = EG for all &, then whatever the limit £ is, Fn is
a central sequence for En and it converges in law to W¥(0,LAVp): the proof
is very much along the same line as above. More generally, this statement is

true when the function f is such that for all LeR,

) ! f'iax) fe) —Ecx—sz]L
P— hLEa} il EE + {_]-_f'{cr_ - L)1 - a7 mO] e )

vanishes only at a=e .. W

REMARK 7: If one has the choice of the observation schemes, it is suitable to
have W~ go as fast as possible to 0, or equivalently IEHI go as fast as
possible to +w. For Schemes | or 2 (resp. Schemes 1 or 3) it means that for
n fixed, it is best to take : 8 (resp. tn} as small as possible. This is
in contrast with the complete 2-dimensional madel, for which the (best) rate
of convergence of estimators of & is always 1/vn, whatever schemes are cho-

sen (Corollary 1). =

REMARK 8: It is obviously possible to undertake a similar study when « is a
known function g(€) of £, twice continuously differentiable on some open

subset B of (0,m). We consider two cases:

1) The derivative has g'(£_)#0: then in a neighbourhood of &£. there is a
0 0

bi-continuous one-to-one correspondance between «=g(£) and £, and the pre-
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vious results for a-models are immediately transeribed in terms of £-models.

2) g(E)zuD is constant oen B: then for every fixed n, the model is an

exponential family by (2.4). Se UMVU estimators for certain functionals of £
5 -e L

exist: take [Nn/tn}e " as estimator for £ in Scheme 1, I{Tn/’n]e. " for

1/€  in Schemes 2 or 3 (recall that e is known here). By Lemma 1 these

estimators are asymptotically normal with rate 1/V/n, and LAN property will

hold for local models £ = ED{HHN'H] at €, for all observation schemes. m
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